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The present talk is based on some ideas developed 1n the
following papers:

— 1. Kadyshevsky V.G., Mateev M.D., Rodionov V.N., Sorin A.S.,

"TOWARDS A MAXIMAL MASS MODEL" arXiv:0708.4205v1

[hep-ph] 30 Aug 2007; CERN-TH/2007-150.

2. Kadyshevsky V.G., Nucl. Phys., B141, p. 477 (1978); in
Proceedings of International Integrative Conference on Group
Theory and Mathematical Physics, Austin, Texas, 1978;
Fermilab-Pub.

78/70-THY, Sept. 1978; Phys. Elem. Chast. Atom. Yadra, 11,
p. 5 (1980).

3. Kadyshevsky V.G., Mateev M. D., Phys. Lett., B106, p. 139
(1981); Nuovo Cimento. A87, p. 324, (1985).

4. Chizhov M. V., Donkov A.D., Ibadov R.M., Kadyshevsky
V.G., Mateev M. D., Nuovo Cimento, A87, p. 350; p. 373
(1985).

5. Kadyshevsky V.G., Phys. Part. Nucl. 29, p. 227 (1998).



) The contemporary theory of elementary particles is known as the
Standard Model (SM). The notion ‘elementary particle’ supposes that
In accordance with present experimental data these objects do not
have a composite structure and are described by local quantum fields.
The SM Lagrangian depends on finite numbers of fields of this kind:

- three families of quark and lepton fields;

- four vector boson fields = 79 4

- an octet of gluon fields g;

- the hypothetic field of the Higgs boson A .

One of the most important characteristics of an elementary particle 1s
its mass. In SM one observes a great variety in the mass values. For
example, t-quark is more than 300000 times heavier than the
electron. In this situation the question naturally arises: up to what
values of mass one may apply the concept of a local quantum field?
Formally, the contemporary QFT remains a logically perfect scheme
and 1ts mathematical structure does not change at all up to arbitrarily
large values of masses of quanta.
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In other words, the ordinary QFT with its Feynman diagram
techniques formally allows one to consider elementary processes
for macrospically heavy objects.
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Maybe this pathological picture is the Achilles heel of this
theory?!
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The key idea of our approach is the following radical hypothesis:
the mass spectrum of elementary particles, i.e. the objects
described by local fields, has to be cut off at a certain value M:

m<M (1)

This statement has to be accepted as a new fundamental principle
of Nature, which similarly to the relativistic and quantum
postulates should underlie QFT. The new universal physical
constant M is not only the maximal value of particle mass but also
plays the role of a new high-energy scale. We shall call this
parameter the fundamental mass.

It is worth emphasizing that here, due to (1), the Compton wave
length of a particle Ac =7/mccannot be smaller than the
“fundamental length’ | = #i/ Mc . According to Newton T.D., Wigner
E.P., Rev. Mod. Phys., 21, p.400 (1949), the parameter A,
characterizes the dimensions of the region of space in which a
relativistic particle of mass m can be localized. Therefore, the
fundamental length / introduces into the theory a universal
bound on the accuracy of the localization in space of elementary
particles. 5
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We start the construction of the new QFT based on condition (1)

[ with the simplest example — the free theory of the neutral
™ scalar field @(x):

Z,

|—vﬂ l—

(@ + mIJpx)=0 (2)
It is the Klein-Gordon eqn. After standard Fourier transform
D 1 .
5 _ ~ip X" 4 0.0 =
u o(x) = 3 _[9 o(p)d”p (px"=px —px) @©
19) (272' )
'rll we find the equation of motion in the Minkowskil momentum 4-
- 2 2 2 2 =2
space: (m*=p°)p(p)=0,p"=p;—p
— (4
From a geometrical point of view m 1s the radius of the "mass

shell”
hyperboloid:  m° = p — p°,
(5)
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where the field ¢(p) is defined. /n the Minkowski momentum
space one may embed hyperboloids of the type (5) of an
arbitrary radius m.

How should one modify the equations of motion in order that
the existence of the bound m* < M* should become as evident
as the himitation v < ¢ 1n the special theory of relativity? In the
latter case everything is explained in a simple way: the
relativization of the 3-dimensional velocity space 1s equivalent
to transition in this space from Euclidean to Lobachevsky
geometry realized on the upper sheet of the 4-dimensional
hyperboloid (5). Let us proceed in a similar way and substitute
the 4-dimensional Minkowskl momentum space, which is used
in the standard QFT, by the (anti) de Sitter momentum space
realized on the 5-hyperboloid: D g B ]32 +p 52 Ve o

7



JJ We suppose that in p-representation our scalar field is defined just

[ on the surface (6), i.e. it is a function of five variables
0
I3

7,

[ (po: P, p5) which are connected by relation (6):
_5(170 +p5 Mz)gﬂ(po,ﬁ,pS)._) (7)
The energy Do and the 3-momentum P here preserve their
usual meaning and the mass shell relation (5) is satisfied as well.
[)  Therefore, for the field considered (0(]7 0 D p5) the condition
L omS<M? s always fulfilled. For this reason let us put 7

— =SIn
Y, H

Clearly, in eq. (7) the specification of a single function @(p,, P, Ps)
of five variables (p n p5) is equivalent to the definition of two
independent functions ¢,(p) and ¢,(p) of the 4-momentum p, .

L/\r

> o =
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o

- _ ¢(p,|p5|)]:(¢1(p)] e ®
?(Po: P, Ps) = (P, Ps) £¢(p,_|p5|) o(1) | pe| = /M2 = p?.




.J  The appearance of the new discrete degree of freedom p2s / ‘ p5‘

[ and the associated doubling of the number of field variables 1s an

I'[  important feature of the new approach. It must be taken into

%, account in the search of the equation of motion for the free field in
the (anti) de Sitter momentum space. Due to the mass shell
relation (5) the Klein-Gordon equation (4) should also be satisfied

by the field @(p,, P, ps)
(m2 _pg +l_52)§0(po’l_§’p5) =0

From our point of view this equation is unsatisfactory for two
reasons:

1. It does not reflect condition (1)

2. It cannot be used to determine the dependence of the field on
—— the new quantum number p- / ‘ pS‘ in order to distinguish between
the components @,(p) and @,(p)

Here we notice that, because of (6), eq.(9) can be written as:
2

m
(p5+MCOS#)(p5—MCOSﬂ)¢(p,p5)=0,COS/1=\/ — 7 (10)
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J Now following the Dirac trick we postulate the equation of motion

I under question in the form:

N 2M (s~ M c0s {)p(p, ps) =0 w

~*— (learly, eq. (11) has none of the enumerated defects of the
standard Klein-Gordon equation (9). However, equation (9) is still
satisfied by the field @(p, p;).

1) From egs. (11) and (8) it follows that

ol 2M (|ps|— M cos w)p, (p) =0, (12)

2 2M (| ps|+ M cos 1), (p) =0,

L and we obtain: , o~

2l o (p)=0(p"—m")p(p) (13)

»,(p)=0

"~ Therefore, the free field ¢@(p, p.) defined in the (anti)de Sitter
momentum space (6) describes the same free scalar particles of
mass m as the field @(p) in the Minkowski p-space, with the only
difference that now we necessarily have m < M.

10
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The two-component structure (8) of the new field does not
manifest itself on the mass shell, owing to (13). However, it
will play an important role when the fields interact, i.e., off
the mass shell.

Now we face the problem of constructing the action
corresponding

to eq. (11) and transforming it to configuration representation.
Due to some reasons, not only technical, in the following we
shall use the Euchidean formulation of the theory which
appears as an analytical continuation to purely imaginary

energies: :
P, —>Ip 4 (14)

In this case, instead of the (anti) de Sitter p-space (6) we shall
work with de Sitter p-space:

—pi+pl=M?*n=1234 (15)

_ 2 2
Obviously, Ps = i\/M /P (16)
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If one uses eq. (15), the Euclidean Klein-Gordon operator (2 + p*)
may be written, similarly to (10), in the following factorized form:

f m’ + p° = (ps + M cos u)(ps — M cos ).

B -
COS i = 1—W

D Clearly, the nonnegative functional § (M) = zM x
j| p[cﬂl (P)2M (| M cosu)p(p)+¢; (p)2M(p + M cosdp, (p) g

ELE, (p)= (0(p,i‘]?5|), (19)

plays the role of the action integral of the free Euclidean field
—— @(p, ps)- The action may be written also as a 5 - integral:

Sy (M) =M x
[£(p)8(p,.p" = M*)d®plo™ (p. ps)2M (ps — M cos w)e(p, ps)} 20)
L=12345

5 1= 1= ¢

-

(17)
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P
What about the Fourier transform and the confuguration

representation in the new formalism? Let us note that in the
basic equation

—pi+pi=M’

where

which defines the de Sitter p-space, all the components of the 5-
momentum enter on equal footing. Therefore, the expression

5(p.p" —M?*)o(p, ps),

which now replaces (7), may be Fourier transformed in the
following way:

2M —ip x* L
(2 )%j e " S(p,p" =~ M*)p(p, ps)d’p = p(x, %), (22)
T

K,L=12345.

13



J This function obviously satisfies the Klein-Gordon type
L equation in the 5-dimensional configuration space-:

=

i
- 2
r

_I‘)

— (7o +M?)p(x,x;)=0 (23)

5

Integration over Ps in (22) gives:

~ M ip,x" d4 —i| pg|x° il pe x°
u o plnxs)= yj e e gy (p) +e! coz(p)] (24)
b (27) P
0 g 25
& 97 (x,x5) = @(x,—xs), (25)
z|
~ from which we get:
o) L [on gt ple P g () - g ()] @0
M 5)65 (272.)4

14



.J The four-dimensional integrals (24) and (26) transform the
[ fields ¢,(p) and ¢,(p) to the configuration representation.
L[ The inverse transforms have the form: )
- g 0el‘p5‘x il 0@(x,x

o (p)= % je P d x| ol xg) ———— ¢ P, ;) ’

2M (277) 2 ] O s |(27)

iy | e Pl e Dplx,x _
D) = e ol ) et SO |
N 2M (27) 2 ] Ox oxs
19
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We note that the independent field variables

x,0) =¢(x) = I P gt a()+(p) (28)

(5
o

— (277)/2 A
and
; a(ﬁ(X,O) — x) = 1 eipnx” 4 B
M ox. =7(x) = (Zﬂ)%j d*plo.(p) - 9,(p)] (29)

15



J can be treated as initial Cauchy data on the surface Xs = 0
[ for the hyperbolic-type equation (23).

L[ Using(28) — (29) one can represent the action S (1/) in the

— following form:

$,(M) = [ d“x{(agfx’)z + i (p(x))? + M2 (z(x) — cos W(X))Z} -
(30)

n

= j L,(x,M)d*x

or = &

So we may conclude:
1.The new free Lagrangian density L,(x,M) is a local
function of two field variables @(x) and x(x) . This is a direct
consequence of the fact that in the de Sitter momentum space
— the field has a doublet structure

((01 (p) ]

?,(p)

ﬁ'v

Q)
—

due to two signs of Ps .
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J 2. Ly(x,M) does not contain a kinetic term corresponding to the
L field y(x) . Thus, this variable is just auxiliary.

2
)[ 3. Due to the presence of the factor cos ;= / 1— % in the

y_

Z,

|—v—; l—

Lagrangian density L,(x,M) the condition (1) is fulfilled.

4. From the geometrical point of view the Euclidean momentum

_—D 4-space 1s the “flat limit” of the de Sitter p-space and may be
‘,Ll associated with the aproximation
Y ~
o ps=M (31)
a P, (M
In the same limit in configuration space we have:
~ . —IMx (323)

_ plxnx)=e o(x)

x(x) = o(x) (32b)

1
It is easy to obtain a correction of the order O(W) o O T
approximation (32b):

17



Op(x)
[ 2M?

;. Thus, in the “flat limit” the quantity/,
*—  the standard Euclidean Lagranglarg (fénswy

2 2
Ly(x, M) ;E(ﬁ—gpj L (%)
2\ Ox, 2
(“correspondence principle”).
As an instructive example of interaction case let us consider
the simplest scalar Lagrangian which is invariant with

respect to the discrete symmetry transformation
— o(x) > —e(x), Z(x) - —Z(X) .

Lix, M) == (222 | 1 ~ (-0 (p() - £ () +

2 Ox, (33)

A @ (X);Z (x)_vz)zl

o(x) = x(x) =

[

Z,

coincides with

|—v—; |—

P T &

)
P
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J under the conditionM ) 2212
52
IN|

+,  The spontaneouns symmetry breaking mechanism leads to the
~“— stable vacuum and appearance of particle mass:

2
m 4
m=m0\/—4M , (34)

7 =

S & O

where m, = x/E/”tv. It is easy to see that

. i’ 2
1- 7 _1- " | >0 ,
M? 2M*?

i.e. the condition (1) is fulfilled. If M/ — o , then

B L(xM)——>1[5¢j l( (x)—v?f

ﬁ'v

(5
o

2\ Ox

n

and the particle mass is equal to 7 =M, = \/Eﬂ«V

19



J
[ electromagnetic field theory. In the (anti) de Sitter p-space (6)
;. we have the standard Maxzwell equations for the 4-potential

o A,u(p’pS)
2
P Aﬂ(p’pS) — py(pA(p1p5))’ (35)

Let us consider very briefly the new version of the free

which are invariant under gauge transformations

A,(p,ps) > A,(p,ps) —ip, A(p, Ps)

P T &

)

-

Let us put

__ (pA(p, ps)) = (M + p;)A;(p, ps)

Then egn (35) can be written as
(M + p)|(M = p)A4,(p, ps) - P, 4 (P, ps)|=0

20



J
1 Similarly to the scalar case (cf.(10) and (11)) we finally obtain
\[ the generalized Maxwell equations for the 5-potential

1 (Ay (P, Ds) 4s(Py Ps))  in the (anti) de Sitter momentum

i
|
1

-

space-

D

i 2M (M — ps)Aﬂ (P, ps) = ZMPﬂAs(pJ%) .
L 36
7 (M +pg)4(p, ps) = (pA(p, ps))

2. The corresponding gauge transformations take the form:
_ A4,(p,ps) > 4,(p,ps)—ip, A(p, ps)

(37)

As(p, ps) = As(p, ps) —i(M — ps)A(p, ps)

It is clear that the standard Maxwell equations (35) follow
from (36).



The formulation of the given theory in configuration space will
be developed using again, as in the scalar case, the de Sitter
momentum space

. =P —Dpy-pi—pitps =M

The key role belongs to the 5-dimensional Fourier transform
(compare with (22)):

2M —ipyx”
A, (x,x5) =———-1 e 5(pep* —M?*)A4,(p, ps)d’p,

(27 )A (38)
K,L,N,=12345.
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It is evident that (38) satisfies the equation (compare with (23))
0° 2 (39)

(—— O+ M)A, (x,x;) =0.

x5

The action is given by the integrals (compare with (20), and
(30))



So(M) =27M x

[

2

IN n ,

o x| e(p)d(p,p" = MP)d* p2M (ps - M)A, (p. ps) - £ Alpors)|
no| ps—M ‘

- jd“xLO (x,M;) = %J.d“ngL (o, x ) F ™ (x,x.) +
D x5 — O x5 = 0 2
iMbxs .

o +£J‘d4x 6(@ AL(X,.XE))) —2iMelMx5A5(x,x5) ,

1 2 8xL

O x: =0

Il n= 1121314; K» L = 1» 2» 3» 4» 5» (40)
% where the “field strength 5-tensor™:

o(e™s A, (x, x o(e™ A (x,x

I FKL (x,x5) — ( KL( 5)) . ( L( 5))

Ox ox™ (41)

is introduced. This quantity is obviously expressed in terms of
the commutator of the 5-dimensional covariant derivatives:

23
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7 a . iMx
L D, =—F——ige"™ A4, (x,x5), (42)
N Ox
t,__ where q is the electric charge. It is easy to verify that the
integral (40) is invariant under gauge transformations of the 5-
potential 4; (X,X;) (compare with (37)):
DR - o(e™ s A(x, x
L () > () - S e
., X
~ with the condition
) 0° ;
(@_ O+ M“)A(x,x;)=0.
5

Let us notice that the gauge function 4(x, x;) 1s defined by two
i 0A(x,0)

initial data A(x) = A (X,O) and u(x)= PYE
X

24



T Therefore, the new group (43) is broader than the standard
N gauge group. This is due to the fact that in the transition to
R the 5-dimensional description there appear additional
superfluous gauge degrees of freedom, subject to removal.
To 1llustrate the technique developed, let us formulate in our
D terms a unique prescription for construction of the action
0 integral of the Euclidean scalar electrodynamics consistent
19 with the requirements of locality, gauge invariance, and de

Sitter structure of momentum space:

. In the action integral for the complex scalar field (use (30) as
a pattern) it is necessary to substitute the 3rdinary
derivatives (including is I, (y)= o o(x,0) )

Ox M Ox.

by the covariant ones (see (42)).

ﬂ"

(o
e

2. Add to the obtained expression the action integral of the
electromagnetic field (40).



The total action integral remains invariant under
simultaneous gauge transformation (43) at x, =0 of the

[

lr\)[ electromagnetic 5-potential and charged field transformation
o(x) = U(x,0)p(x)

5 2(x) = U(x,0)[x (%) +ig(u(x))p(x)]

N where

9 - |

4 U0)=U(x, xg)= e )| = o),

(5
o

A0 =A(x0), u(x)—Maigjo)

Let us note that a generalization of the considered Abelian

formalism to the non- Abelian case does not meet any
difficulties.




In conclusion, I would like to discuss briefly some peculiar
features of the new version of the Euclidean fermion theory. In

[

lr\)[ the ordinary formalism the free Euclidean Dirac operator

~— D(p)=m+p,y";n=1234 (44)
appears as a result of factorization of the Euclidean K.-G.wave
operator- : .

.U Now, instead of (45) we obtain the following factorization

p formula:

Il . 5 . n 5

., 2M(ps—Mcosu)= [ZMSIH %ﬂw” —(ps—M)y }[ZMSIH o =p.y" +(ps—M)y }

(46)

and, correspondingly, instead of (44) the new expression for the
Dirac operator

D(p,M)=p,y" —(ps—M)y” +2Msin % (47)
It is easy to check that in the “flat approximation”
P, <<M, m<<M , Ps =M

27



J both expressions (47) and (44) coincide. The operator (47) allows
[ us to develop the local spinor field formalism in configuration

1 space that can be considered as a generalization of the

', Euclidean Dirac theorv along our lines

"~ But the amusing point is that the new KG-operator

2M (ps —M COS 1)  has one more decomposition into matrix
factors:
2M (ps — M cos u) =

8)
:[pny” —}/5(p5 +M)+2MCOS%}[pn7" —7/5(p5 +M)—2MCOS//2(j

S & O

ﬁ"
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Therefore, if our approach is considered to be realistic, it may be
assumed that in Nature there exists some exotic fermion field
associated with the wave operator

D (pM)=py -7 (ps+ M +2Mcos//
exotic (p ) pnj/ 7/ (p5 ) 2 (49)

28



J In contrast toD(p,M) = p,y" —(ps—M)y° +2Msin % , the

f\[ operator D, . (p,M) does not have a limit when M — o0,

7, that justifies the name chosen for the field considered. The
polarization properties of the exotic fermion field differ sharply
from the standard ones.

D

It is tempting to think that the quanta of the exotic fermion

field have a direct relation to the structure of the “dark matter”

> o =

Let us come back to the de Sitter surface
2 | 2 2
Using the matrix basis (1, 7°, 7°, 7", 7> Jone may represent (50)

(5
o

as (M +p, " YM-p, T )=M?-p.p"* =0, K=1,234,5

29



For spinor fields, which are defined on the surface (50), the

matrix operators 1

N o M+ piy ") =11 (p ps)

Lo Ky (51)
2M(M pxy )=11,(p, ps)

[) are projection operators. In other words,
Ll 2 2
HR:HR’HL:HL (52)
I, =11,11,=0
I, +11, =1

oo 1= l—

(5
o

So the fermion field ¥ (p, p;) , defined in the de Sitter
momentum space, may be presented as a sum of two fields

v(p,ps)=v:(p,ps)+v, (P, ps) (53)

30



J
1 VDo) =1y (pops), v (p,ps) =1,y (p, ps)

L[ which obey the following 5-dimensional Dirac equations:

R (M = pey* Wwi(p, ps)=0
(M +pey* v, (p,ps)=0

/,

(54)

-|_-|) Obviously, decomposition (53) is de Sitter invariant. It is easy to
.;) verify that in the “flat approximation” |P,|<<M, =M p.

5
., one has 7o 1ty (55)

R,L 2

)
P

This is the reason that we can consider the fields ¥ R( P, |O5)

and (p, ps) @s “chiral”Lcomponents in our approach. The

new chirality operator ./ similarly to its “flat counterpart”,
IV

has eligenvalues equal to x 1 but depends on the energy and

momentum. 31
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It is well khown that the chiral fermions are the basic spinor
field variables in SM. The new geometrical nature of these
quantities has to manifest itself at high energies E > M.

— In configuration space the 5-dimensional Dirac equations
(54)take the form - -

18
M—ZKV We(x,x5)=0
§ » (56)
M‘Hﬂy v, (x,x5) =0
L oxt "
K=12345

Introducing the corresponding initial conditigggs at()
—  Yr(x,0) =) (x)
w,(x,0) =y, (x)

one obtains the local fields which can undergo chiral gauge

transformations.
32



J " The new geometrical concept of chirality allows us to think

7 =

[ that the parity violation in weak interactions discovered more

o =

;. than 50 years ago was a manifestation of the de Sitter nature

|-

of momentum 4-space.

The main purpose of the present talk was to demonstrate that

there exist a local field formalism respecting the gauge

or = &

invariance principle and being consistent with our main

ﬁ'v

hypothesis m < M.

(5
o

A nontrivial generalization of the Standard Model based on
our geometrical approach, in particular, on a new concept of
chirality, now is being worked out. Below we give, just for
illustation the new interaction Lagrangian expession for

leptons eand V, containing corrections of the order 0 (1/M).



Lint = ¢ E(z)Ae(x) — Gsin® 0,8(z) Ze(z) — I(z) 25 v(z) -

~&7(a)W 5 e(x) - @)W v(z) + Fele) 2 55he(a)+

H(z)W* Pelz) - () PW(a)] + o le(e)W Pv(z) - 7(z) FW* e(@)+
+§%[@(x)zae(sc) (2) Ze(a)]+ L (7(e) 2 F(a) - ‘Mv( )+
+28 {in,p(z)v(a zﬁv (@9 Zv(x) |+

+29 {m(a)e(z) + K 1e(a) £ Pelo) - ()T Pel )1}

t 1t 22 { ()W Fela) — &(a) TW(a)] + [l W* Pol) — (o) TWe(a)]

All fields are defined in the Minkowski x-space. Accordmg to
our estimaions M >17eV 34



“BXPERIMENT =
GEOMETRY + PHYSICS”



